![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6rbbr | GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl6rbbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6rbbr.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
syl6rbbr | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbbr.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | syl6rbbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 130 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | syl6rbb 195 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: imimorbdc 828 baib 861 pm5.6dc 868 xornbidc 1322 mo2dc 1996 reu8 2788 sbc6g 2839 r19.28m 3331 r19.45mv 3335 r19.27m 3336 ralsnsg 3430 ralsns 3431 iunconstm 3686 iinconstm 3687 unisucg 4169 funssres 4962 fncnv 4985 dff1o5 5155 funimass4 5245 fneqeql2 5297 fnniniseg2 5311 rexsupp 5312 unpreima 5313 dffo3 5335 funfvima 5411 dff13 5428 f1eqcocnv 5451 fliftf 5459 isocnv2 5472 eloprabga 5611 mpt22eqb 5630 opabex3d 5768 opabex3 5769 elxp6 5816 elxp7 5817 genpdflem 6697 ltnqpr 6783 ltexprlemloc 6797 xrlenlt 7177 negcon2 7361 dfinfre 8034 elznn 8367 zq 8711 rpnegap 8766 modqmuladdnn0 9370 shftdm 9710 rexfiuz 9875 rexanuz2 9877 odd2np1 10272 divalgb 10325 infssuzex 10345 isprm4 10501 |
Copyright terms: Public domain | W3C validator |