![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ineqan12d | GIF version |
Description: Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
Ref | Expression |
---|---|
ineq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
ineqan12d.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
ineqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ineqan12d.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | ineq12 3162 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | |
4 | 1, 2, 3 | syl2an 283 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∩ cin 2972 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 |
This theorem is referenced by: fvun1 5260 fndmin 5295 offval 5739 ofrfval 5740 offval3 5781 |
Copyright terms: Public domain | W3C validator |