ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  int0el GIF version

Theorem int0el 3666
Description: The intersection of a class containing the empty set is empty. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
int0el (∅ ∈ 𝐴 𝐴 = ∅)

Proof of Theorem int0el
StepHypRef Expression
1 intss1 3651 . 2 (∅ ∈ 𝐴 𝐴 ⊆ ∅)
2 0ss 3282 . . 3 ∅ ⊆ 𝐴
32a1i 9 . 2 (∅ ∈ 𝐴 → ∅ ⊆ 𝐴)
41, 3eqssd 3016 1 (∅ ∈ 𝐴 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wss 2973  c0 3251   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-int 3637
This theorem is referenced by:  intv  3944  inton  4148
  Copyright terms: Public domain W3C validator