| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > intmin3 | GIF version | ||
| Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.) |
| Ref | Expression |
|---|---|
| intmin3.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| intmin3.3 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| intmin3 | ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intmin3.3 | . . 3 ⊢ 𝜓 | |
| 2 | intmin3.2 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | elabg 2739 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 4 | 1, 3 | mpbiri 166 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝑥 ∣ 𝜑}) |
| 5 | intss1 3651 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 {cab 2067 ⊆ wss 2973 ∩ cint 3636 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-in 2979 df-ss 2986 df-int 3637 |
| This theorem is referenced by: intid 3979 |
| Copyright terms: Public domain | W3C validator |