ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin3 GIF version

Theorem intmin3 3663
Description: Under subset ordering, the intersection of a class abstraction is less than or equal to any of its members. (Contributed by NM, 3-Jul-2005.)
Hypotheses
Ref Expression
intmin3.2 (𝑥 = 𝐴 → (𝜑𝜓))
intmin3.3 𝜓
Assertion
Ref Expression
intmin3 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem intmin3
StepHypRef Expression
1 intmin3.3 . . 3 𝜓
2 intmin3.2 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
32elabg 2739 . . 3 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
41, 3mpbiri 166 . 2 (𝐴𝑉𝐴 ∈ {𝑥𝜑})
5 intss1 3651 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5syl 14 1 (𝐴𝑉 {𝑥𝜑} ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wcel 1433  {cab 2067  wss 2973   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-in 2979  df-ss 2986  df-int 3637
This theorem is referenced by:  intid  3979
  Copyright terms: Public domain W3C validator