![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isoeq2 | GIF version |
Description: Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.) |
Ref | Expression |
---|---|
isoeq2 | ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3787 | . . . . 5 ⊢ (𝑅 = 𝑇 → (𝑥𝑅𝑦 ↔ 𝑥𝑇𝑦)) | |
2 | 1 | bibi1d 231 | . . . 4 ⊢ (𝑅 = 𝑇 → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
3 | 2 | 2ralbidv 2390 | . . 3 ⊢ (𝑅 = 𝑇 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
4 | 3 | anbi2d 451 | . 2 ⊢ (𝑅 = 𝑇 → ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))))) |
5 | df-isom 4931 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
6 | df-isom 4931 | . 2 ⊢ (𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑇𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
7 | 4, 5, 6 | 3bitr4g 221 | 1 ⊢ (𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∀wral 2348 class class class wbr 3785 –1-1-onto→wf1o 4921 ‘cfv 4922 Isom wiso 4923 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-cleq 2074 df-clel 2077 df-ral 2353 df-br 3786 df-isom 4931 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |