ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jaob GIF version

Theorem jaob 663
Description: Disjunction of antecedents. Compare Theorem *4.77 of [WhiteheadRussell] p. 121. Alias of ax-io 662. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.)
Assertion
Ref Expression
jaob (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))

Proof of Theorem jaob
StepHypRef Expression
1 ax-io 662 1 (((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661
This theorem was proved from axioms:  ax-io 662
This theorem is referenced by:  olc  664  orc  665  pm3.44  667  pm4.77  745  pm5.53  748  unss  3146  ralunb  3153  intun  3667  intpr  3668  relop  4504  indstr  8681  algcvgblem  10431  sqrt2irr  10541  bj-inf2vnlem1  10765
  Copyright terms: Public domain W3C validator