| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.44 | GIF version | ||
| Description: Theorem *3.44 of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| pm3.44 | ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaob 663 | . 2 ⊢ (((𝜓 ∨ 𝜒) → 𝜑) ↔ ((𝜓 → 𝜑) ∧ (𝜒 → 𝜑))) | |
| 2 | 1 | biimpri 131 | 1 ⊢ (((𝜓 → 𝜑) ∧ (𝜒 → 𝜑)) → ((𝜓 ∨ 𝜒) → 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: jaoi 668 jao 704 pm2.6dc 792 pm4.83dc 892 |
| Copyright terms: Public domain | W3C validator |