| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaoian | GIF version | ||
| Description: Inference disjoining the antecedents of two implications. (Contributed by NM, 23-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaoian.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| jaoian.2 | ⊢ ((𝜃 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| jaoian | ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaoian.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 2 | 1 | ex 113 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 3 | jaoian.2 | . . . 4 ⊢ ((𝜃 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | ex 113 | . . 3 ⊢ (𝜃 → (𝜓 → 𝜒)) |
| 5 | 2, 4 | jaoi 668 | . 2 ⊢ ((𝜑 ∨ 𝜃) → (𝜓 → 𝜒)) |
| 6 | 5 | imp 122 | 1 ⊢ (((𝜑 ∨ 𝜃) ∧ 𝜓) → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: ordi 762 ccase 905 faclbnd 9668 faclbnd3 9670 |
| Copyright terms: Public domain | W3C validator |