| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.61 | GIF version | ||
| Description: Theorem *5.61 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 30-Jun-2013.) |
| Ref | Expression |
|---|---|
| pm5.61 | ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biorf 695 | . . 3 ⊢ (¬ 𝜓 → (𝜑 ↔ (𝜓 ∨ 𝜑))) | |
| 2 | orcom 679 | . . 3 ⊢ ((𝜓 ∨ 𝜑) ↔ (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | syl6rbb 195 | . 2 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) ↔ 𝜑)) |
| 4 | 3 | pm5.32ri 442 | 1 ⊢ (((𝜑 ∨ 𝜓) ∧ ¬ 𝜓) ↔ (𝜑 ∧ ¬ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 102 ↔ wb 103 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm5.75 903 excxor 1309 xrnemnf 8853 xrnepnf 8854 |
| Copyright terms: Public domain | W3C validator |