ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mooran2 GIF version

Theorem mooran2 2014
Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mooran2 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))

Proof of Theorem mooran2
StepHypRef Expression
1 moor 2012 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
2 olc 664 . . 3 (𝜓 → (𝜑𝜓))
32moimi 2006 . 2 (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓)
41, 3jca 300 1 (∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  ∃*wmo 1942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator