| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp3an12i | GIF version | ||
| Description: mp3an 1268 with antecedents in standard conjunction form and with one hypothesis an implication. (Contributed by Alan Sare, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| mp3an12i.1 | ⊢ 𝜑 |
| mp3an12i.2 | ⊢ 𝜓 |
| mp3an12i.3 | ⊢ (𝜒 → 𝜃) |
| mp3an12i.4 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) |
| Ref | Expression |
|---|---|
| mp3an12i | ⊢ (𝜒 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp3an12i.3 | . 2 ⊢ (𝜒 → 𝜃) | |
| 2 | mp3an12i.1 | . . 3 ⊢ 𝜑 | |
| 3 | mp3an12i.2 | . . 3 ⊢ 𝜓 | |
| 4 | mp3an12i.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | |
| 5 | 2, 3, 4 | mp3an12 1258 | . 2 ⊢ (𝜃 → 𝜏) |
| 6 | 1, 5 | syl 14 | 1 ⊢ (𝜒 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: oddp1d2 10290 bezoutlema 10388 bezoutlemb 10389 |
| Copyright terms: Public domain | W3C validator |