| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpan10 | GIF version | ||
| Description: Modus ponens mixed with several conjunctions. (Contributed by Jim Kingdon, 7-Jan-2018.) |
| Ref | Expression |
|---|---|
| mpan10 | ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 262 | . . . 4 ⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) | |
| 2 | 1 | anbi2i 444 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑)) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) |
| 3 | anass 393 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ ((𝜑 → 𝜓) ∧ (𝜒 ∧ 𝜑))) | |
| 4 | anass 393 | . . 3 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∧ 𝜒))) | |
| 5 | 2, 3, 4 | 3bitr4i 210 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) ↔ (((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒)) |
| 6 | id 19 | . . . 4 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 7 | 6 | imp 122 | . . 3 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
| 8 | 7 | anim1i 333 | . 2 ⊢ ((((𝜑 → 𝜓) ∧ 𝜑) ∧ 𝜒) → (𝜓 ∧ 𝜒)) |
| 9 | 5, 8 | sylbi 119 | 1 ⊢ ((((𝜑 → 𝜓) ∧ 𝜒) ∧ 𝜑) → (𝜓 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |