| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbi2and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 6-Nov-2011.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| mpbi2and.1 | ⊢ (𝜑 → 𝜓) |
| mpbi2and.2 | ⊢ (𝜑 → 𝜒) |
| mpbi2and.3 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| mpbi2and | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbi2and.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | mpbi2and.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 300 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | mpbi2and.3 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ 𝜃)) | |
| 5 | 3, 4 | mpbid 145 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: supisoti 6423 remim 9747 resqrtcl 9915 divalgmod 10327 oddpwdclemxy 10547 |
| Copyright terms: Public domain | W3C validator |