![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbir2an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 10-May-2005.) (Revised by NM, 9-Jan-2015.) |
Ref | Expression |
---|---|
mpbir2an.1 | ⊢ 𝜓 |
mpbir2an.2 | ⊢ 𝜒 |
mpbiran2an.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
mpbir2an | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir2an.2 | . 2 ⊢ 𝜒 | |
2 | mpbir2an.1 | . . 3 ⊢ 𝜓 | |
3 | mpbiran2an.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
4 | 2, 3 | mpbiran 881 | . 2 ⊢ (𝜑 ↔ 𝜒) |
5 | 1, 4 | mpbir 144 | 1 ⊢ 𝜑 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3pm3.2i 1116 euequ1 2036 eqssi 3015 dtruarb 3962 opnzi 3990 so0 4081 we0 4116 ord0 4146 ordon 4230 onsucelsucexmidlem1 4271 regexmidlemm 4275 ordpwsucexmid 4313 reg3exmidlemwe 4321 ordom 4347 funi 4952 funcnvsn 4965 fnresi 5036 fn0 5038 f0 5100 fconst 5102 f10 5180 f1o0 5183 f1oi 5184 f1osn 5186 isoid 5470 acexmidlem2 5529 fo1st 5804 fo2nd 5805 iordsmo 5935 tfrlem7 5956 tfrexlem 5971 1pi 6505 prarloclemcalc 6692 ltsopr 6786 ltsosr 6941 axicn 7031 nnindnn 7059 ltso 7189 negiso 8033 nnind 8055 0z 8362 dfuzi 8457 cnref1o 8733 elrpii 8737 xrltso 8871 0e0icopnf 9002 0e0iccpnf 9003 fldiv4p1lem1div2 9307 expcl2lemap 9488 expclzaplem 9500 expge0 9512 expge1 9513 fclim 10133 halfleoddlt 10294 2prm 10509 3prm 10510 ex-fl 10563 bj-indint 10726 bj-omord 10755 |
Copyright terms: Public domain | W3C validator |