| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpbir3and | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014.) |
| Ref | Expression |
|---|---|
| mpbir3and.1 | ⊢ (𝜑 → 𝜒) |
| mpbir3and.2 | ⊢ (𝜑 → 𝜃) |
| mpbir3and.3 | ⊢ (𝜑 → 𝜏) |
| mpbir3and.4 | ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) |
| Ref | Expression |
|---|---|
| mpbir3and | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3and.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | mpbir3and.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 3 | mpbir3and.3 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 4 | 1, 2, 3 | 3jca 1118 | . 2 ⊢ (𝜑 → (𝜒 ∧ 𝜃 ∧ 𝜏)) |
| 5 | mpbir3and.4 | . 2 ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃 ∧ 𝜏))) | |
| 6 | 4, 5 | mpbird 165 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 ∧ w3a 919 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 df-3an 921 |
| This theorem is referenced by: ixxss1 8927 ixxss2 8928 ixxss12 8929 ubioc1 8952 lbico1 8953 lbicc2 9006 ubicc2 9007 modqelico 9336 zmodfz 9348 modqmuladdim 9369 addmodid 9374 |
| Copyright terms: Public domain | W3C validator |