| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mprg | GIF version | ||
| Description: Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| mprg.1 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) |
| mprg.2 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| mprg | ⊢ 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mprg.2 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝜑) | |
| 2 | 1 | rgen 2416 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝜑 |
| 3 | mprg.1 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → 𝜓) | |
| 4 | 2, 3 | ax-mp 7 | 1 ⊢ 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 1433 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-gen 1378 |
| This theorem depends on definitions: df-bi 115 df-ral 2353 |
| This theorem is referenced by: reximia 2456 rmoimia 2792 iuneq2i 3696 iineq2i 3697 dfiun2 3712 dfiin2 3713 dfiun3 4609 dfiin3 4610 cnviinm 4879 bj-omtrans 10751 |
| Copyright terms: Public domain | W3C validator |