ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnviinm GIF version

Theorem cnviinm 4879
Description: The converse of an intersection is the intersection of the converse. (Contributed by Jim Kingdon, 18-Dec-2018.)
Assertion
Ref Expression
cnviinm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem cnviinm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2141 . . 3 (𝑦 = 𝑎 → (𝑦𝐴𝑎𝐴))
21cbvexv 1836 . 2 (∃𝑦 𝑦𝐴 ↔ ∃𝑎 𝑎𝐴)
3 eleq1 2141 . . . 4 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
43cbvexv 1836 . . 3 (∃𝑥 𝑥𝐴 ↔ ∃𝑎 𝑎𝐴)
5 relcnv 4723 . . . 4 Rel 𝑥𝐴 𝐵
6 r19.2m 3329 . . . . . . . 8 ((∃𝑥 𝑥𝐴 ∧ ∀𝑥𝐴 𝐵 ⊆ (V × V)) → ∃𝑥𝐴 𝐵 ⊆ (V × V))
76expcom 114 . . . . . . 7 (∀𝑥𝐴 𝐵 ⊆ (V × V) → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V)))
8 relcnv 4723 . . . . . . . . 9 Rel 𝐵
9 df-rel 4370 . . . . . . . . 9 (Rel 𝐵𝐵 ⊆ (V × V))
108, 9mpbi 143 . . . . . . . 8 𝐵 ⊆ (V × V)
1110a1i 9 . . . . . . 7 (𝑥𝐴𝐵 ⊆ (V × V))
127, 11mprg 2420 . . . . . 6 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 𝐵 ⊆ (V × V))
13 iinss 3729 . . . . . 6 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
1412, 13syl 14 . . . . 5 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 ⊆ (V × V))
15 df-rel 4370 . . . . 5 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
1614, 15sylibr 132 . . . 4 (∃𝑥 𝑥𝐴 → Rel 𝑥𝐴 𝐵)
17 vex 2604 . . . . . . . 8 𝑏 ∈ V
18 vex 2604 . . . . . . . 8 𝑎 ∈ V
1917, 18opex 3984 . . . . . . 7 𝑏, 𝑎⟩ ∈ V
20 eliin 3683 . . . . . . 7 (⟨𝑏, 𝑎⟩ ∈ V → (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵))
2119, 20ax-mp 7 . . . . . 6 (⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2218, 17opelcnv 4535 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝑥𝐴 𝐵)
2318, 17opex 3984 . . . . . . . 8 𝑎, 𝑏⟩ ∈ V
24 eliin 3683 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ V → (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵))
2523, 24ax-mp 7 . . . . . . 7 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵)
2618, 17opelcnv 4535 . . . . . . . 8 (⟨𝑎, 𝑏⟩ ∈ 𝐵 ↔ ⟨𝑏, 𝑎⟩ ∈ 𝐵)
2726ralbii 2372 . . . . . . 7 (∀𝑥𝐴𝑎, 𝑏⟩ ∈ 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2825, 27bitri 182 . . . . . 6 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴𝑏, 𝑎⟩ ∈ 𝐵)
2921, 22, 283bitr4i 210 . . . . 5 (⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥𝐴 𝐵)
3029eqrelriv 4451 . . . 4 ((Rel 𝑥𝐴 𝐵 ∧ Rel 𝑥𝐴 𝐵) → 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
315, 16, 30sylancr 405 . . 3 (∃𝑥 𝑥𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
324, 31sylbir 133 . 2 (∃𝑎 𝑎𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
332, 32sylbi 119 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wex 1421  wcel 1433  wral 2348  wrex 2349  Vcvv 2601  wss 2973  cop 3401   ciin 3679   × cxp 4361  ccnv 4362  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iin 3681  df-br 3786  df-opab 3840  df-xp 4369  df-rel 4370  df-cnv 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator