ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpt2eq123i GIF version

Theorem mpt2eq123i 5588
Description: An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.)
Hypotheses
Ref Expression
mpt2eq123i.1 𝐴 = 𝐷
mpt2eq123i.2 𝐵 = 𝐸
mpt2eq123i.3 𝐶 = 𝐹
Assertion
Ref Expression
mpt2eq123i (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)

Proof of Theorem mpt2eq123i
StepHypRef Expression
1 mpt2eq123i.1 . . . 4 𝐴 = 𝐷
21a1i 9 . . 3 (⊤ → 𝐴 = 𝐷)
3 mpt2eq123i.2 . . . 4 𝐵 = 𝐸
43a1i 9 . . 3 (⊤ → 𝐵 = 𝐸)
5 mpt2eq123i.3 . . . 4 𝐶 = 𝐹
65a1i 9 . . 3 (⊤ → 𝐶 = 𝐹)
72, 4, 6mpt2eq123dv 5587 . 2 (⊤ → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
87trud 1293 1 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
Colors of variables: wff set class
Syntax hints:   = wceq 1284  wtru 1285  cmpt2 5534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-oprab 5536  df-mpt2 5537
This theorem is referenced by:  ofmres  5783
  Copyright terms: Public domain W3C validator