| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpt2eq123i | GIF version | ||
| Description: An equality inference for the maps to notation. (Contributed by NM, 15-Jul-2013.) |
| Ref | Expression |
|---|---|
| mpt2eq123i.1 | ⊢ 𝐴 = 𝐷 |
| mpt2eq123i.2 | ⊢ 𝐵 = 𝐸 |
| mpt2eq123i.3 | ⊢ 𝐶 = 𝐹 |
| Ref | Expression |
|---|---|
| mpt2eq123i | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpt2eq123i.1 | . . . 4 ⊢ 𝐴 = 𝐷 | |
| 2 | 1 | a1i 9 | . . 3 ⊢ (⊤ → 𝐴 = 𝐷) |
| 3 | mpt2eq123i.2 | . . . 4 ⊢ 𝐵 = 𝐸 | |
| 4 | 3 | a1i 9 | . . 3 ⊢ (⊤ → 𝐵 = 𝐸) |
| 5 | mpt2eq123i.3 | . . . 4 ⊢ 𝐶 = 𝐹 | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (⊤ → 𝐶 = 𝐹) |
| 7 | 2, 4, 6 | mpt2eq123dv 5587 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹)) |
| 8 | 7 | trud 1293 | 1 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐷, 𝑦 ∈ 𝐸 ↦ 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1284 ⊤wtru 1285 ↦ cmpt2 5534 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-oprab 5536 df-mpt2 5537 |
| This theorem is referenced by: ofmres 5783 |
| Copyright terms: Public domain | W3C validator |