| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtand | GIF version | ||
| Description: A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.) |
| Ref | Expression |
|---|---|
| mtand.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtand.2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| mtand | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtand.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | mtand.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 3 | 2 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mtod 621 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem is referenced by: frirrg 4105 phpm 6351 diffisn 6377 pm54.43 6459 addcanprleml 6804 addcanprlemu 6805 pw2dvdseulemle 10545 sqne2sq 10555 |
| Copyright terms: Public domain | W3C validator |