ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 GIF version

Theorem pm54.43 6459
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6031 . . . . . . . 8 1𝑜 ∈ On
21elexi 2611 . . . . . . 7 1𝑜 ∈ V
32ensn1 6299 . . . . . 6 {1𝑜} ≈ 1𝑜
43ensymi 6285 . . . . 5 1𝑜 ≈ {1𝑜}
5 entr 6287 . . . . 5 ((𝐵 ≈ 1𝑜 ∧ 1𝑜 ≈ {1𝑜}) → 𝐵 ≈ {1𝑜})
64, 5mpan2 415 . . . 4 (𝐵 ≈ 1𝑜𝐵 ≈ {1𝑜})
71onirri 4286 . . . . . . 7 ¬ 1𝑜 ∈ 1𝑜
8 disjsn 3454 . . . . . . 7 ((1𝑜 ∩ {1𝑜}) = ∅ ↔ ¬ 1𝑜 ∈ 1𝑜)
97, 8mpbir 144 . . . . . 6 (1𝑜 ∩ {1𝑜}) = ∅
10 unen 6316 . . . . . 6 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ ((𝐴𝐵) = ∅ ∧ (1𝑜 ∩ {1𝑜}) = ∅)) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
119, 10mpanr2 428 . . . . 5 (((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1211ex 113 . . . 4 ((𝐴 ≈ 1𝑜𝐵 ≈ {1𝑜}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
136, 12sylan2 280 . . 3 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜})))
14 df-2o 6025 . . . . 5 2𝑜 = suc 1𝑜
15 df-suc 4126 . . . . 5 suc 1𝑜 = (1𝑜 ∪ {1𝑜})
1614, 15eqtri 2101 . . . 4 2𝑜 = (1𝑜 ∪ {1𝑜})
1716breq2i 3793 . . 3 ((𝐴𝐵) ≈ 2𝑜 ↔ (𝐴𝐵) ≈ (1𝑜 ∪ {1𝑜}))
1813, 17syl6ibr 160 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2𝑜))
19 en1 6302 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 6302 . . 3 (𝐵 ≈ 1𝑜 ↔ ∃𝑦 𝐵 = {𝑦})
21 1nen2 6347 . . . . . . . . . . . . 13 ¬ 1𝑜 ≈ 2𝑜
2221a1i 9 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ¬ 1𝑜 ≈ 2𝑜)
23 unidm 3115 . . . . . . . . . . . . . . . 16 ({𝑥} ∪ {𝑥}) = {𝑥}
24 sneq 3409 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524uneq2d 3126 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
2623, 25syl5reqr 2128 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
27 vex 2604 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2827ensn1 6299 . . . . . . . . . . . . . . 15 {𝑥} ≈ 1𝑜
2926, 28syl6eqbr 3822 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≈ 1𝑜)
3029ensymd 6286 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → 1𝑜 ≈ ({𝑥} ∪ {𝑦}))
31 entr 6287 . . . . . . . . . . . . 13 ((1𝑜 ≈ ({𝑥} ∪ {𝑦}) ∧ ({𝑥} ∪ {𝑦}) ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
3230, 31sylan 277 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ ({𝑥} ∪ {𝑦}) ≈ 2𝑜) → 1𝑜 ≈ 2𝑜)
3322, 32mtand 623 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2𝑜)
3433necon2ai 2299 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2𝑜𝑥𝑦)
35 disjsn2 3455 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3634, 35syl 14 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅)
3736a1i 9 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2𝑜 → ({𝑥} ∩ {𝑦}) = ∅))
38 uneq12 3121 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3938breq1d 3795 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 ↔ ({𝑥} ∪ {𝑦}) ≈ 2𝑜))
40 ineq12 3162 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4140eqeq1d 2089 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4237, 39, 413imtr4d 201 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4342ex 113 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4443exlimdv 1740 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4544exlimiv 1529 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅)))
4645imp 122 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4719, 20, 46syl2anb 285 . 2 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) ≈ 2𝑜 → (𝐴𝐵) = ∅))
4818, 47impbid 127 1 ((𝐴 ≈ 1𝑜𝐵 ≈ 1𝑜) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2𝑜))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wex 1421  wcel 1433  wne 2245  cun 2971  cin 2972  c0 3251  {csn 3398   class class class wbr 3785  Oncon0 4118  suc csuc 4120  1𝑜c1o 6017  2𝑜c2o 6018  cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-2o 6025  df-er 6129  df-en 6245
This theorem is referenced by:  pr2nelem  6460
  Copyright terms: Public domain W3C validator