| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mtord | GIF version | ||
| Description: A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| mtord.1 | ⊢ (𝜑 → ¬ 𝜒) |
| mtord.2 | ⊢ (𝜑 → ¬ 𝜃) |
| mtord.3 | ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| mtord | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mtord.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) | |
| 2 | mtord.1 | . . . . 5 ⊢ (𝜑 → ¬ 𝜒) | |
| 3 | 2 | pm2.21d 581 | . . . 4 ⊢ (𝜑 → (𝜒 → ¬ 𝜓)) |
| 4 | mtord.2 | . . . . 5 ⊢ (𝜑 → ¬ 𝜃) | |
| 5 | 4 | pm2.21d 581 | . . . 4 ⊢ (𝜑 → (𝜃 → ¬ 𝜓)) |
| 6 | 3, 5 | jaod 669 | . . 3 ⊢ (𝜑 → ((𝜒 ∨ 𝜃) → ¬ 𝜓)) |
| 7 | 1, 6 | syld 44 | . 2 ⊢ (𝜑 → (𝜓 → ¬ 𝜓)) |
| 8 | 7 | pm2.01d 580 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: swoer 6157 |
| Copyright terms: Public domain | W3C validator |