| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neleq12d | GIF version | ||
| Description: Equality theorem for negated membership. (Contributed by FL, 10-Aug-2016.) |
| Ref | Expression |
|---|---|
| neleq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| neleq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| neleq12d | ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neleq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | neleq1 2343 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐶)) |
| 4 | neleq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | neleq2 2344 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐵 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐵 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| 7 | 3, 6 | bitrd 186 | 1 ⊢ (𝜑 → (𝐴 ∉ 𝐶 ↔ 𝐵 ∉ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∉ wnel 2339 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-cleq 2074 df-clel 2077 df-nel 2340 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |