ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelne2 GIF version

Theorem nelne2 2336
Description: Two classes are different if they don't belong to the same class. (Contributed by NM, 25-Jun-2012.)
Assertion
Ref Expression
nelne2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)

Proof of Theorem nelne2
StepHypRef Expression
1 eleq1 2141 . . . 4 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 157 . . 3 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32necon3bd 2288 . 2 (𝐴𝐶 → (¬ 𝐵𝐶𝐴𝐵))
43imp 122 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wcel 1433  wne 2245
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-4 1440  ax-17 1459  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-cleq 2074  df-clel 2077  df-ne 2246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator