| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nemtbir | GIF version | ||
| Description: An inference from an inequality, related to modus tollens. (Contributed by NM, 13-Apr-2007.) |
| Ref | Expression |
|---|---|
| nemtbir.1 | ⊢ 𝐴 ≠ 𝐵 |
| nemtbir.2 | ⊢ (𝜑 ↔ 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| nemtbir | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nemtbir.1 | . . 3 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | df-ne 2246 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 3 | 1, 2 | mpbi 143 | . 2 ⊢ ¬ 𝐴 = 𝐵 |
| 4 | nemtbir.2 | . 2 ⊢ (𝜑 ↔ 𝐴 = 𝐵) | |
| 5 | 3, 4 | mtbir 628 | 1 ⊢ ¬ 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 = wceq 1284 ≠ wne 2245 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-ne 2246 |
| This theorem is referenced by: opthprc 4409 php5 6344 snnen2oprc 6346 m1exp1 10301 |
| Copyright terms: Public domain | W3C validator |