| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nf3an | GIF version | ||
| Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfan.1 | ⊢ Ⅎ𝑥𝜑 |
| nfan.2 | ⊢ Ⅎ𝑥𝜓 |
| nfan.3 | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| nf3an | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 921 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | nfan.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfan 1497 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| 5 | nfan.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfan 1497 | . 2 ⊢ Ⅎ𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) |
| 7 | 1, 6 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ∧ w3a 919 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 |
| This theorem is referenced by: vtocl3gaf 2667 mob 2774 nfop 3586 |
| Copyright terms: Public domain | W3C validator |