![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfcd | GIF version |
Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfcd.1 | ⊢ Ⅎ𝑦𝜑 |
nfcd.2 | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Ref | Expression |
---|---|
nfcd | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcd.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | nfcd.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | alrimi 1455 | . 2 ⊢ (𝜑 → ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
4 | df-nfc 2208 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
5 | 3, 4 | sylibr 132 | 1 ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-nfc 2208 |
This theorem is referenced by: nfabd 2237 dvelimdc 2238 sbnfc2 2962 |
Copyright terms: Public domain | W3C validator |