| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcr | GIF version | ||
| Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfcr | ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2208 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | sp 1441 | . 2 ⊢ (∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sylbi 119 | 1 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nfc 2208 |
| This theorem is referenced by: nfcrii 2212 nfcrd 2232 abidnf 2760 csbtt 2918 csbnestgf 2954 |
| Copyright terms: Public domain | W3C validator |