| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfcvf | GIF version | ||
| Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcvf | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2219 | . 2 ⊢ Ⅎ𝑥𝑧 | |
| 2 | nfcv 2219 | . 2 ⊢ Ⅎ𝑧𝑦 | |
| 3 | id 19 | . 2 ⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) | |
| 4 | 1, 2, 3 | dvelimc 2239 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1282 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 |
| This theorem is referenced by: nfcvf2 2241 |
| Copyright terms: Public domain | W3C validator |