ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfcvf GIF version

Theorem nfcvf 2240
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. (Contributed by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2219 . 2 𝑥𝑧
2 nfcv 2219 . 2 𝑧𝑦
3 id 19 . 2 (𝑧 = 𝑦𝑧 = 𝑦)
41, 2, 3dvelimc 2239 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wal 1282  wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by:  nfcvf2  2241
  Copyright terms: Public domain W3C validator