![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdisjv | GIF version |
Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
nfdisjv.1 | ⊢ Ⅎ𝑦𝐴 |
nfdisjv.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfdisjv | ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdisj2 3768 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
2 | nfcv 2219 | . . . . . 6 ⊢ Ⅎ𝑦𝑥 | |
3 | nfdisjv.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐴 | |
4 | 2, 3 | nfel 2227 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
5 | nfdisjv.2 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
6 | 5 | nfcri 2213 | . . . . 5 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
7 | 4, 6 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
8 | 7 | nfmo 1961 | . . 3 ⊢ Ⅎ𝑦∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
9 | 8 | nfal 1508 | . 2 ⊢ Ⅎ𝑦∀𝑧∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
10 | 1, 9 | nfxfr 1403 | 1 ⊢ Ⅎ𝑦Disj 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 ∃*wmo 1942 Ⅎwnfc 2206 Disj wdisj 3766 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rmo 2356 df-disj 3767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |