![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfrab1 | GIF version |
Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.) |
Ref | Expression |
---|---|
nfrab1 | ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2357 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | nfab1 2221 | . 2 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 1, 2 | nfcxfr 2216 | 1 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜑} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ∈ wcel 1433 {cab 2067 Ⅎwnfc 2206 {crab 2352 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 |
This theorem is referenced by: repizf2 3936 rabxfrd 4219 onintrab2im 4262 tfis 4324 fvmptssdm 5276 infssuzcldc 10347 |
Copyright terms: Public domain | W3C validator |