ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nsyl3 GIF version

Theorem nsyl3 588
Description: A negated syllogism inference. (Contributed by NM, 1-Dec-1995.) (Revised by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
nsyl3.1 (𝜑 → ¬ 𝜓)
nsyl3.2 (𝜒𝜓)
Assertion
Ref Expression
nsyl3 (𝜒 → ¬ 𝜑)

Proof of Theorem nsyl3
StepHypRef Expression
1 nsyl3.2 . 2 (𝜒𝜓)
2 nsyl3.1 . . 3 (𝜑 → ¬ 𝜓)
32a1i 9 . 2 (𝜒 → (𝜑 → ¬ 𝜓))
41, 3mt2d 587 1 (𝜒 → ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-in1 576  ax-in2 577
This theorem is referenced by:  con2i  589  nsyl  590  pm2.65i  600  cesare  2045  cesaro  2049  pwnss  3933  sucprcreg  4292  reg3exmidlemwe  4321  reldmtpos  5891  fzn  9061
  Copyright terms: Public domain W3C validator