ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwnss GIF version

Theorem pwnss 3933
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwnss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2143 . . . . . . 7 ((𝑦 = {𝑥𝐴𝑥𝑥} ∧ 𝑦 = {𝑥𝐴𝑥𝑥}) → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
21anidms 389 . . . . . 6 (𝑦 = {𝑥𝐴𝑥𝑥} → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
32notbid 624 . . . . 5 (𝑦 = {𝑥𝐴𝑥𝑥} → (¬ 𝑦𝑦 ↔ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
4 df-nel 2340 . . . . . . 7 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
5 eleq12 2143 . . . . . . . . 9 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
65anidms 389 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
76notbid 624 . . . . . . 7 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
84, 7syl5bb 190 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
98cbvrabv 2600 . . . . 5 {𝑥𝐴𝑥𝑥} = {𝑦𝐴 ∣ ¬ 𝑦𝑦}
103, 9elrab2 2751 . . . 4 ({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
11 pclem6 1305 . . . 4 (({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥})) → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴)
1210, 11ax-mp 7 . . 3 ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴
13 ssel 2993 . . 3 (𝒫 𝐴𝐴 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 → {𝑥𝐴𝑥𝑥} ∈ 𝐴))
1412, 13mtoi 622 . 2 (𝒫 𝐴𝐴 → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
15 ssrab2 3079 . . 3 {𝑥𝐴𝑥𝑥} ⊆ 𝐴
16 elpw2g 3931 . . 3 (𝐴𝑉 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 ↔ {𝑥𝐴𝑥𝑥} ⊆ 𝐴))
1715, 16mpbiri 166 . 2 (𝐴𝑉 → {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
1814, 17nsyl3 588 1 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wnel 2339  {crab 2352  wss 2973  𝒫 cpw 3382
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-nel 2340  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986  df-pw 3384
This theorem is referenced by:  pwne  3934  pwuninel2  5920
  Copyright terms: Public domain W3C validator