| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ofeq | GIF version | ||
| Description: Equality theorem for function operation. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| ofeq | ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 938 | . . . . 5 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → 𝑅 = 𝑆) | |
| 2 | 1 | oveqd 5549 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → ((𝑓‘𝑥)𝑅(𝑔‘𝑥)) = ((𝑓‘𝑥)𝑆(𝑔‘𝑥))) |
| 3 | 2 | mpteq2dv 3869 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝑓 ∈ V ∧ 𝑔 ∈ V) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) |
| 4 | 3 | mpt2eq3dva 5589 | . 2 ⊢ (𝑅 = 𝑆 → (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥))))) |
| 5 | df-of 5732 | . 2 ⊢ ∘𝑓 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) | |
| 6 | df-of 5732 | . 2 ⊢ ∘𝑓 𝑆 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑆(𝑔‘𝑥)))) | |
| 7 | 4, 5, 6 | 3eqtr4g 2138 | 1 ⊢ (𝑅 = 𝑆 → ∘𝑓 𝑅 = ∘𝑓 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 919 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∩ cin 2972 ↦ cmpt 3839 dom cdm 4363 ‘cfv 4922 (class class class)co 5532 ↦ cmpt2 5534 ∘𝑓 cof 5730 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-uni 3602 df-br 3786 df-opab 3840 df-mpt 3841 df-iota 4887 df-fv 4930 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-of 5732 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |