| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm3.48 | GIF version | ||
| Description: Theorem *3.48 of [WhiteheadRussell] p. 114. (Contributed by NM, 28-Jan-1997.) (Revised by NM, 1-Dec-2012.) |
| Ref | Expression |
|---|---|
| pm3.48 | ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 665 | . . 3 ⊢ (𝜓 → (𝜓 ∨ 𝜃)) | |
| 2 | 1 | imim2i 12 | . 2 ⊢ ((𝜑 → 𝜓) → (𝜑 → (𝜓 ∨ 𝜃))) |
| 3 | olc 664 | . . 3 ⊢ (𝜃 → (𝜓 ∨ 𝜃)) | |
| 4 | 3 | imim2i 12 | . 2 ⊢ ((𝜒 → 𝜃) → (𝜒 → (𝜓 ∨ 𝜃))) |
| 5 | 2, 4 | jaao 671 | 1 ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: orim12d 732 |
| Copyright terms: Public domain | W3C validator |