| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaao | GIF version | ||
| Description: Inference conjoining and disjoining the antecedents of two implications. (Contributed by NM, 30-Sep-1999.) |
| Ref | Expression |
|---|---|
| jaao.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jaao.2 | ⊢ (𝜃 → (𝜏 → 𝜒)) |
| Ref | Expression |
|---|---|
| jaao | ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∨ 𝜏) → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaao.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | adantr 270 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜓 → 𝜒)) |
| 3 | jaao.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜒)) | |
| 4 | 3 | adantl 271 | . 2 ⊢ ((𝜑 ∧ 𝜃) → (𝜏 → 𝜒)) |
| 5 | 2, 4 | jaod 669 | 1 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∨ 𝜏) → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∨ wo 661 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm3.48 731 prlem1 914 nford 1499 funun 4964 poxp 5873 nntri3or 6095 |
| Copyright terms: Public domain | W3C validator |