| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.54dc | GIF version | ||
| Description: A conjunction is equivalent to one of its conjuncts, given a decidable conjunct. Based on theorem *5.54 of [WhiteheadRussell] p. 125. (Contributed by Jim Kingdon, 30-Mar-2018.) |
| Ref | Expression |
|---|---|
| pm5.54dc | ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | simpr 108 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
| 3 | ax-ia3 106 | . . . . 5 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 4 | 2, 3 | impbid2 141 | . . . 4 ⊢ (𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
| 5 | simpl 107 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | ax-in2 577 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → (𝜑 ∧ 𝜓))) | |
| 7 | 5, 6 | impbid2 141 | . . . 4 ⊢ (¬ 𝜑 → ((𝜑 ∧ 𝜓) ↔ 𝜑)) |
| 8 | 4, 7 | orim12i 708 | . . 3 ⊢ ((𝜑 ∨ ¬ 𝜑) → (((𝜑 ∧ 𝜓) ↔ 𝜓) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜑))) |
| 9 | 1, 8 | sylbi 119 | . 2 ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜓) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜑))) |
| 10 | 9 | orcomd 680 | 1 ⊢ (DECID 𝜑 → (((𝜑 ∧ 𝜓) ↔ 𝜑) ∨ ((𝜑 ∧ 𝜓) ↔ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |