![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orcomd | GIF version |
Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010.) |
Ref | Expression |
---|---|
orcomd.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
orcomd | ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcomd.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | orcom 679 | . 2 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
3 | 1, 2 | sylib 120 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: olcd 685 stabtestimpdc 857 pm5.54dc 860 swopo 4061 sotritrieq 4080 reg3exmidlemwe 4321 acexmidlemcase 5527 2oconcl 6045 nntri3or 6095 nntri2 6096 nntri1 6097 nnsseleq 6102 diffisn 6377 addnqprlemfu 6750 mulnqprlemfu 6766 addcanprlemu 6805 cauappcvgprlemladdru 6846 apreap 7687 mulap0r 7715 nnm1nn0 8329 elnn0z 8364 zleloe 8398 nneoor 8449 nneo 8450 zeo2 8453 uzm1 8649 nn01to3 8702 uzsplit 9109 fzospliti 9185 fzouzsplit 9188 qavgle 9267 zeo3 10267 bezoutlemmain 10387 |
Copyright terms: Public domain | W3C validator |