| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm5.63dc | GIF version | ||
| Description: Theorem *5.63 of [WhiteheadRussell] p. 125, for a decidable proposition. (Contributed by Jim Kingdon, 12-May-2018.) |
| Ref | Expression |
|---|---|
| pm5.63dc | ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 776 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 2 | ordi 762 | . . . 4 ⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜓)) ↔ ((𝜑 ∨ ¬ 𝜑) ∧ (𝜑 ∨ 𝜓))) | |
| 3 | 2 | simplbi2 377 | . . 3 ⊢ ((𝜑 ∨ ¬ 𝜑) → ((𝜑 ∨ 𝜓) → (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) |
| 4 | 1, 3 | sylbi 119 | . 2 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) → (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) |
| 5 | 2 | simprbi 269 | . 2 ⊢ ((𝜑 ∨ (¬ 𝜑 ∧ 𝜓)) → (𝜑 ∨ 𝜓)) |
| 6 | 4, 5 | impbid1 140 | 1 ⊢ (DECID 𝜑 → ((𝜑 ∨ 𝜓) ↔ (𝜑 ∨ (¬ 𝜑 ∧ 𝜓)))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ↔ wb 103 ∨ wo 661 DECID wdc 775 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
| This theorem depends on definitions: df-bi 115 df-dc 776 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |