![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi2 | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.) |
Ref | Expression |
---|---|
pm3.26bi2.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi2 | ⊢ (𝜓 → (𝜒 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.26bi2.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpri 131 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) |
3 | 2 | ex 113 | 1 ⊢ (𝜓 → (𝜒 → 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.62dc 886 pm5.63dc 887 simplbi2com 1373 reuss2 3244 elni2 6504 elfz0ubfz0 9136 elfzmlbp 9143 fzo1fzo0n0 9192 elfzo0z 9193 fzofzim 9197 elfzodifsumelfzo 9210 dfgcd2 10403 ialgcvga 10433 |
Copyright terms: Public domain | W3C validator |