ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbi2 GIF version

Theorem simplbi2 377
Description: Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
Hypothesis
Ref Expression
pm3.26bi2.1 (𝜑 ↔ (𝜓𝜒))
Assertion
Ref Expression
simplbi2 (𝜓 → (𝜒𝜑))

Proof of Theorem simplbi2
StepHypRef Expression
1 pm3.26bi2.1 . . 3 (𝜑 ↔ (𝜓𝜒))
21biimpri 131 . 2 ((𝜓𝜒) → 𝜑)
32ex 113 1 (𝜓 → (𝜒𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  pm5.62dc  886  pm5.63dc  887  simplbi2com  1373  reuss2  3244  elni2  6504  elfz0ubfz0  9136  elfzmlbp  9143  fzo1fzo0n0  9192  elfzo0z  9193  fzofzim  9197  elfzodifsumelfzo  9210  dfgcd2  10403  ialgcvga  10433
  Copyright terms: Public domain W3C validator