| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > poeq2 | GIF version | ||
| Description: Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.) |
| Ref | Expression |
|---|---|
| poeq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss2 3052 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐵 ⊆ 𝐴) | |
| 2 | poss 4053 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 → 𝑅 Po 𝐵)) |
| 4 | eqimss 3051 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐴 ⊆ 𝐵) | |
| 5 | poss 4053 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐵 → 𝑅 Po 𝐴)) |
| 7 | 3, 6 | impbid 127 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Po 𝐴 ↔ 𝑅 Po 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ⊆ wss 2973 Po wpo 4049 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-in 2979 df-ss 2986 df-po 4051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |