| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.21 | GIF version | ||
| Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.) |
| Ref | Expression |
|---|---|
| r19.21.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| r19.21 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.21.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | r19.21t 2436 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | |
| 3 | 1, 2 | ax-mp 7 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 Ⅎwnf 1389 ∀wral 2348 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
| This theorem is referenced by: r19.21v 2438 |
| Copyright terms: Public domain | W3C validator |