| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.29af2 | GIF version | ||
| Description: A commonly used pattern based on r19.29 2494 (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| Ref | Expression |
|---|---|
| r19.29af2.p | ⊢ Ⅎ𝑥𝜑 |
| r19.29af2.c | ⊢ Ⅎ𝑥𝜒 |
| r19.29af2.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af2.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af2 | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af2.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | r19.29af2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | r19.29af2.1 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | 3 | exp31 356 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 5 | 2, 4 | ralrimi 2432 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 6 | 1, 5 | jca 300 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒))) |
| 7 | r19.29r 2495 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) → ∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒))) | |
| 8 | r19.29af2.c | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 9 | pm3.35 339 | . . . 4 ⊢ ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) | |
| 10 | 9 | a1i 9 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((𝜓 ∧ (𝜓 → 𝜒)) → 𝜒)) |
| 11 | 8, 10 | rexlimi 2470 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜓 ∧ (𝜓 → 𝜒)) → 𝜒) |
| 12 | 6, 7, 11 | 3syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 Ⅎwnf 1389 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 ax-i5r 1468 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: r19.29af 2497 |
| Copyright terms: Public domain | W3C validator |