ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32r GIF version

Theorem r19.32r 2501
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
Hypothesis
Ref Expression
r19.32r.1 𝑥𝜑
Assertion
Ref Expression
r19.32r ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))

Proof of Theorem r19.32r
StepHypRef Expression
1 r19.32r.1 . . . 4 𝑥𝜑
2 orc 665 . . . . 5 (𝜑 → (𝜑𝜓))
32a1d 22 . . . 4 (𝜑 → (𝑥𝐴 → (𝜑𝜓)))
41, 3alrimi 1455 . . 3 (𝜑 → ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
5 df-ral 2353 . . . 4 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
6 olc 664 . . . . . 6 (𝜓 → (𝜑𝜓))
76imim2i 12 . . . . 5 ((𝑥𝐴𝜓) → (𝑥𝐴 → (𝜑𝜓)))
87alimi 1384 . . . 4 (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
95, 8sylbi 119 . . 3 (∀𝑥𝐴 𝜓 → ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
104, 9jaoi 668 . 2 ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
11 df-ral 2353 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥(𝑥𝐴 → (𝜑𝜓)))
1210, 11sylibr 132 1 ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661  wal 1282  wnf 1389  wcel 1433  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-gen 1378  ax-4 1440
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-ral 2353
This theorem is referenced by:  r19.32vr  2502
  Copyright terms: Public domain W3C validator