ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32vdc GIF version

Theorem r19.32vdc 2503
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
Assertion
Ref Expression
r19.32vdc (DECID 𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.32vdc
StepHypRef Expression
1 r19.21v 2438 . . 3 (∀𝑥𝐴𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓))
21a1i 9 . 2 (DECID 𝜑 → (∀𝑥𝐴𝜑𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓)))
3 dfordc 824 . . 3 (DECID 𝜑 → ((𝜑𝜓) ↔ (¬ 𝜑𝜓)))
43ralbidv 2368 . 2 (DECID 𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴𝜑𝜓)))
5 dfordc 824 . 2 (DECID 𝜑 → ((𝜑 ∨ ∀𝑥𝐴 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝐴 𝜓)))
62, 4, 53bitr4d 218 1 (DECID 𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 103  wo 661  DECID wdc 775  wral 2348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-gen 1378  ax-4 1440  ax-17 1459  ax-ial 1467  ax-i5r 1468
This theorem depends on definitions:  df-bi 115  df-dc 776  df-nf 1390  df-ral 2353
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator