| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.37 | GIF version | ||
| Description: Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if 𝐴 has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| r19.37.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| r19.37 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.37.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ax-1 5 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝜑)) | |
| 3 | 1, 2 | ralrimi 2432 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 4 | r19.35-1 2504 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) | |
| 5 | 3, 4 | syl5 32 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1389 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 df-rex 2354 |
| This theorem is referenced by: r19.37av 2507 |
| Copyright terms: Public domain | W3C validator |