ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq2i GIF version

Theorem rabeq2i 2598
Description: Inference rule from equality of a class variable and a restricted class abstraction. (Contributed by NM, 16-Feb-2004.)
Hypothesis
Ref Expression
rabeqi.1 𝐴 = {𝑥𝐵𝜑}
Assertion
Ref Expression
rabeq2i (𝑥𝐴 ↔ (𝑥𝐵𝜑))

Proof of Theorem rabeq2i
StepHypRef Expression
1 rabeqi.1 . . 3 𝐴 = {𝑥𝐵𝜑}
21eleq2i 2145 . 2 (𝑥𝐴𝑥 ∈ {𝑥𝐵𝜑})
3 rabid 2529 . 2 (𝑥 ∈ {𝑥𝐵𝜑} ↔ (𝑥𝐵𝜑))
42, 3bitri 182 1 (𝑥𝐴 ↔ (𝑥𝐵𝜑))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  wcel 1433  {crab 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-rab 2357
This theorem is referenced by:  tfis  4324  fvmptssdm  5276
  Copyright terms: Public domain W3C validator