![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralrimdvv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.) |
Ref | Expression |
---|---|
ralrimdvv.1 | ⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) |
Ref | Expression |
---|---|
ralrimdvv | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimdvv.1 | . . . 4 ⊢ (𝜑 → (𝜓 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒))) | |
2 | 1 | imp 122 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜒)) |
3 | 2 | ralrimivv 2442 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒) |
4 | 3 | ex 113 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1433 ∀wral 2348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 ax-17 1459 |
This theorem depends on definitions: df-bi 115 df-nf 1390 df-ral 2353 |
This theorem is referenced by: ralrimdvva 2446 |
Copyright terms: Public domain | W3C validator |