| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralxfrALT | GIF version | ||
| Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. This proof does not use ralxfrd 4212. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ralxfr.1 | ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) |
| ralxfr.2 | ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) |
| ralxfr.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralxfrALT | ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr.1 | . . . . 5 ⊢ (𝑦 ∈ 𝐶 → 𝐴 ∈ 𝐵) | |
| 2 | ralxfr.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | rspcv 2697 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 4 | 1, 3 | syl 14 | . . . 4 ⊢ (𝑦 ∈ 𝐶 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| 5 | 4 | com12 30 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐶 → 𝜓)) |
| 6 | 5 | ralrimiv 2433 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐶 𝜓) |
| 7 | ralxfr.2 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → ∃𝑦 ∈ 𝐶 𝑥 = 𝐴) | |
| 8 | nfra1 2397 | . . . . 5 ⊢ Ⅎ𝑦∀𝑦 ∈ 𝐶 𝜓 | |
| 9 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 10 | rsp 2411 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → 𝜓)) | |
| 11 | 2 | biimprcd 158 | . . . . . 6 ⊢ (𝜓 → (𝑥 = 𝐴 → 𝜑)) |
| 12 | 10, 11 | syl6 33 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑦 ∈ 𝐶 → (𝑥 = 𝐴 → 𝜑))) |
| 13 | 8, 9, 12 | rexlimd 2474 | . . . 4 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (∃𝑦 ∈ 𝐶 𝑥 = 𝐴 → 𝜑)) |
| 14 | 7, 13 | syl5 32 | . . 3 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → (𝑥 ∈ 𝐵 → 𝜑)) |
| 15 | 14 | ralrimiv 2433 | . 2 ⊢ (∀𝑦 ∈ 𝐶 𝜓 → ∀𝑥 ∈ 𝐵 𝜑) |
| 16 | 6, 15 | impbii 124 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑦 ∈ 𝐶 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∀wral 2348 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |