ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  releq GIF version

Theorem releq 4440
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3020 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 4370 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 4370 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 221 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  Vcvv 2601  wss 2973   × cxp 4361  Rel wrel 4368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986  df-rel 4370
This theorem is referenced by:  releqi  4441  releqd  4442  dfrel2  4791  tposfn2  5904  ereq1  6136
  Copyright terms: Public domain W3C validator