![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > relun | GIF version |
Description: The union of two relations is a relation. Compare Exercise 5 of [TakeutiZaring] p. 25. (Contributed by NM, 12-Aug-1994.) |
Ref | Expression |
---|---|
relun | ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3146 | . 2 ⊢ ((𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V)) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
2 | df-rel 4370 | . . 3 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
3 | df-rel 4370 | . . 3 ⊢ (Rel 𝐵 ↔ 𝐵 ⊆ (V × V)) | |
4 | 2, 3 | anbi12i 447 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) ↔ (𝐴 ⊆ (V × V) ∧ 𝐵 ⊆ (V × V))) |
5 | df-rel 4370 | . 2 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (𝐴 ∪ 𝐵) ⊆ (V × V)) | |
6 | 1, 4, 5 | 3bitr4ri 211 | 1 ⊢ (Rel (𝐴 ∪ 𝐵) ↔ (Rel 𝐴 ∧ Rel 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 Vcvv 2601 ∪ cun 2971 ⊆ wss 2973 × cxp 4361 Rel wrel 4368 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-rel 4370 |
This theorem is referenced by: funun 4964 |
Copyright terms: Public domain | W3C validator |